Copied to
clipboard

G = C42:9D10order 320 = 26·5

9th semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:9D10, C10.952+ 1+4, (C2xC4):5D20, C4:C4:43D10, (C2xC20):11D4, C20:4D4:3C2, (C4xC20):1C22, C4.71(C2xD20), C22:D20:4C2, C4:D20:11C2, C20.287(C2xD4), C4.D20:3C2, (C2xD20):5C22, C42:C2:9D5, (C22xD20):14C2, (C2xC10).69C24, C22:C4.93D10, C10.13(C22xD4), C22.20(C2xD20), C2.15(C22xD20), C2.7(D4:8D10), D10:C4:3C22, (C2xC20).144C23, C5:1(C22.29C24), (C22xC4).190D10, C22.98(C23xD5), (C2xDic10):51C22, (C2xDic5).23C23, (C23xD5).36C22, (C22xD5).19C23, C23.157(C22xD5), (C22xC10).139C23, (C22xC20).229C22, (C2xC4xD5):1C22, (C2xC4oD20):18C2, (C5xC4:C4):53C22, (C2xC10).50(C2xD4), (C5xC42:C2):11C2, (C2xC4).149(C22xD5), (C2xC5:D4).108C22, (C5xC22:C4).101C22, SmallGroup(320,1197)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C42:9D10
C1C5C10C2xC10C22xD5C23xD5C22xD20 — C42:9D10
C5C2xC10 — C42:9D10
C1C22C42:C2

Generators and relations for C42:9D10
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=ab2, dad=a-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 1646 in 334 conjugacy classes, 111 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic5, C20, C20, D10, C2xC10, C2xC10, C2xC10, C42:C2, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xD4, C2xC4oD4, Dic10, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C2xC20, C22xD5, C22xD5, C22xC10, C22.29C24, D10:C4, C4xC20, C5xC22:C4, C5xC4:C4, C2xDic10, C2xC4xD5, C2xD20, C2xD20, C2xD20, C4oD20, C2xC5:D4, C22xC20, C23xD5, C20:4D4, C4.D20, C22:D20, C4:D20, C5xC42:C2, C22xD20, C2xC4oD20, C42:9D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, 2+ 1+4, D20, C22xD5, C22.29C24, C2xD20, C23xD5, C22xD20, D4:8D10, C42:9D10

Smallest permutation representation of C42:9D10
On 80 points
Generators in S80
(1 45 6 33)(2 39 7 41)(3 47 8 35)(4 31 9 43)(5 49 10 37)(11 65 73 70)(12 54 74 59)(13 67 75 62)(14 56 76 51)(15 69 77 64)(16 58 78 53)(17 61 79 66)(18 60 80 55)(19 63 71 68)(20 52 72 57)(21 46 26 34)(22 40 27 42)(23 48 28 36)(24 32 29 44)(25 50 30 38)
(1 58 30 70)(2 59 21 61)(3 60 22 62)(4 51 23 63)(5 52 24 64)(6 53 25 65)(7 54 26 66)(8 55 27 67)(9 56 28 68)(10 57 29 69)(11 45 78 38)(12 46 79 39)(13 47 80 40)(14 48 71 31)(15 49 72 32)(16 50 73 33)(17 41 74 34)(18 42 75 35)(19 43 76 36)(20 44 77 37)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 70)(11 49)(12 48)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 50)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 60)(28 59)(29 58)(30 57)(31 79)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(40 80)

G:=sub<Sym(80)| (1,45,6,33)(2,39,7,41)(3,47,8,35)(4,31,9,43)(5,49,10,37)(11,65,73,70)(12,54,74,59)(13,67,75,62)(14,56,76,51)(15,69,77,64)(16,58,78,53)(17,61,79,66)(18,60,80,55)(19,63,71,68)(20,52,72,57)(21,46,26,34)(22,40,27,42)(23,48,28,36)(24,32,29,44)(25,50,30,38), (1,58,30,70)(2,59,21,61)(3,60,22,62)(4,51,23,63)(5,52,24,64)(6,53,25,65)(7,54,26,66)(8,55,27,67)(9,56,28,68)(10,57,29,69)(11,45,78,38)(12,46,79,39)(13,47,80,40)(14,48,71,31)(15,49,72,32)(16,50,73,33)(17,41,74,34)(18,42,75,35)(19,43,76,36)(20,44,77,37), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,70)(11,49)(12,48)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,50)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,60)(28,59)(29,58)(30,57)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,80)>;

G:=Group( (1,45,6,33)(2,39,7,41)(3,47,8,35)(4,31,9,43)(5,49,10,37)(11,65,73,70)(12,54,74,59)(13,67,75,62)(14,56,76,51)(15,69,77,64)(16,58,78,53)(17,61,79,66)(18,60,80,55)(19,63,71,68)(20,52,72,57)(21,46,26,34)(22,40,27,42)(23,48,28,36)(24,32,29,44)(25,50,30,38), (1,58,30,70)(2,59,21,61)(3,60,22,62)(4,51,23,63)(5,52,24,64)(6,53,25,65)(7,54,26,66)(8,55,27,67)(9,56,28,68)(10,57,29,69)(11,45,78,38)(12,46,79,39)(13,47,80,40)(14,48,71,31)(15,49,72,32)(16,50,73,33)(17,41,74,34)(18,42,75,35)(19,43,76,36)(20,44,77,37), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,70)(11,49)(12,48)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,50)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,60)(28,59)(29,58)(30,57)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,80) );

G=PermutationGroup([[(1,45,6,33),(2,39,7,41),(3,47,8,35),(4,31,9,43),(5,49,10,37),(11,65,73,70),(12,54,74,59),(13,67,75,62),(14,56,76,51),(15,69,77,64),(16,58,78,53),(17,61,79,66),(18,60,80,55),(19,63,71,68),(20,52,72,57),(21,46,26,34),(22,40,27,42),(23,48,28,36),(24,32,29,44),(25,50,30,38)], [(1,58,30,70),(2,59,21,61),(3,60,22,62),(4,51,23,63),(5,52,24,64),(6,53,25,65),(7,54,26,66),(8,55,27,67),(9,56,28,68),(10,57,29,69),(11,45,78,38),(12,46,79,39),(13,47,80,40),(14,48,71,31),(15,49,72,32),(16,50,73,33),(17,41,74,34),(18,42,75,35),(19,43,76,36),(20,44,77,37)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,70),(11,49),(12,48),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,50),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,60),(28,59),(29,58),(30,57),(31,79),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(40,80)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F4G4H4I4J5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order1222222···244444444445510···101010101020···2020···20
size11112220···20222244442020222···244442···24···4

62 irreducible representations

dim11111111222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D5D10D10D10D10D202+ 1+4D4:8D10
kernelC42:9D10C20:4D4C4.D20C22:D20C4:D20C5xC42:C2C22xD20C2xC4oD20C2xC20C42:C2C42C22:C4C4:C4C22xC4C2xC4C10C2
# reps122441114244421628

Matrix representation of C42:9D10 in GL6(F41)

1390000
1400000
000010
000001
0040000
0004000
,
100000
010000
0021300
00283900
0000213
00002839
,
100000
010000
006600
0035100
00003535
0000640
,
100000
1400000
00162500
00392500
00002516
0000216

G:=sub<GL(6,GF(41))| [1,1,0,0,0,0,39,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,28,0,0,0,0,13,39,0,0,0,0,0,0,2,28,0,0,0,0,13,39],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,35,0,0,0,0,6,1,0,0,0,0,0,0,35,6,0,0,0,0,35,40],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,16,39,0,0,0,0,25,25,0,0,0,0,0,0,25,2,0,0,0,0,16,16] >;

C42:9D10 in GAP, Magma, Sage, TeX

C_4^2\rtimes_9D_{10}
% in TeX

G:=Group("C4^2:9D10");
// GroupNames label

G:=SmallGroup(320,1197);
// by ID

G=gap.SmallGroup(320,1197);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<